Pseudorhabdosynochus monaensis n. sp.
(Monogenea: Diplectanidae) on Rock Hind from
Mona Island, Puerto Rico

WILLIAM G. DYER
Department of Zoology, Southern Illinois University
Carbondale, Illinois 62901-6501, USA

ERNEST H. WILLIAMS, JR., AND LUCY BUNKLEY-WILLIAMS
Caribbean Aquatic Animal Health Project, Department of Marine Sciences
University of Puerto Rico, Post Office Box 908, Lajas, Puerto Rico 00667-0908, USA

Abstract.—Pseudorhabdosynochus monaensis n. sp. from rock hind Epinephelus adscensionis
(Perciformes: Serranidae) of Mona Island, Puerto Rico, differs from all known species by the shape
of the vagina. It may be further differentiated from P. amplidiscatum, P. beverleyburtonae, P.
boquetae, P. caballeroi, P. cupatum, P. epinepheli, P. lantaensis, P. melanopsis, P. querni, P.
serrani, P. summanae, and P. vagampullum in having a greater number of rows of scales in each
squamodisc. This new species is most similar to P. americanum, P. latesi, Cyclopectanum mag-
nisquamodiscum, and Cyclopectanum riouxi in having 20 or more squamodisc rows, but may be
separated by differences in squamodisc morphology, male copulatory organ size, and differently
shaped hamuli and dorsal bars.

We have been surveying the species, abundance, localities and pathological effects of helminths of Caribbean fish over the last 20 years. Most reports have been concerned with digeneans and only recently with monogeneans (Dyer et al. 1992a, 1992b). This report is concerned with the description of a new species of Pseudorhabdosynochus from an epinephelid fish.

Methods
A 41.1-cm (total length) rock hind Epinephelus adscensionis—was speared in 15 m of water in coral-covered broad rock ridges off Playa Sardinera, Mona Island (81 km west of southwestern Puerto Rico). The fish was held in a plastic bag within a mesh dive bag approximately 50 min before being brought to the surface. It was then brought immediately to the laboratory aboard the research vessel (RV Crawford) anchored above the dive site. A stereomicroscope was used to examine the fish for metazoan parasites. Monogeneans were fixed in 5% formalin and later mounted in glycerin jelly and studied, under oil immersion, by phase contrast microscopy. All measurements reported for the new species were taken from six adult worms.

For comparative purposes holotype and paratype specimens were borrowed from the U.S. National Museum (USNM), Beltsville, Maryland; the Museum National d’Histoire Naturelle (MNHN), Paris; the Universidad Nacional Autonoma de Mexico (UNAM), Mexico City; and the Meguro Parasitological Museum (MPM), Tokyo (Table 1). Differentiation of the new species from Diplectanum latesi Oliver, 1984, Cyclopectanum beverleyburtonae Oliver, 1984, Cyclopectanum caballeroi Oliver, 1984, Diplectanum serrani Yamaguti, 1953, Cyclopectanum magnisquamodiscum Aljoskina, 1984, and Cyclopectanum riouxi Oliver, 1986, for which no type materials were available, was based on published descriptions. The first four species have since been reclassified as Pseudorhabdosynochus spp.

Characteristics of
Pseudorhabdosynochus monaensis n. sp.

Description (Figures 1–8): Diplectanidae Bychowsky, 1957; Pseudorhabdosynochus Yamaguti, 1958. Body elongated fusiform, 344–700 μm long, 147–180 μm wide at level of testis. Tegument with anteriorly directed scales in posterior third of body region. Head trapezoidal, 54–70 μm wide at base. Two pairs of eyespots dorsal to anterior half of pharynx. Cephalic glands lateral to pharynx; ducts leading to paired head organs. Haptor 48–60 μm long; 118–197 μm wide, with two pairs of hamuli terminating in pointed tips and three separate bars; dorsal hamuli with reduced superficial root, 30–42 μm long from tip of dorsal root to outer curve of blade; ventral hamuli with elongated deep root, 30–40 μm long from tip of deep root to outer curve of blade; dorsal bar
Table 1.—Holotype (H) and paratype (P) specimens used in classification of the new species. Species designations are given as in their respective collections. All of the following have since been reclassified as Pseudorhabdosynochus spp.

<table>
<thead>
<tr>
<th>Species designation</th>
<th>Collection number</th>
<th>Specimen type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diplectrona americanum Price, 1937</td>
<td>USNM 35703</td>
<td>H, P</td>
</tr>
<tr>
<td>Diplectrona amplidiscatum Bravo-Hollis, 1954</td>
<td>UNAM 24-8</td>
<td>P</td>
</tr>
<tr>
<td>Diplectrona bocquetae Oliver and Parnawa, 1984</td>
<td>MNHN 112 TC-96 Tu</td>
<td>H</td>
</tr>
<tr>
<td>Diplectrona cupatum Young, 1969</td>
<td>USNM 63138</td>
<td>P</td>
</tr>
<tr>
<td>Diplectrona epinepheli Yamaguti, 1938</td>
<td>MPM 22259</td>
<td>H, P</td>
</tr>
<tr>
<td>Pseudorhabdosynochus epinepheli Yamaguti, 1958</td>
<td>MPM 22375</td>
<td>P</td>
</tr>
<tr>
<td>Cyclolectrona hongkongensis Beverly-Burton and Suriano, 1981</td>
<td>USNM 76726</td>
<td>H, P</td>
</tr>
<tr>
<td>Cyclolectrona lactuensis Beverly-Burton and Suriano, 1981</td>
<td>USNM 76719</td>
<td>H</td>
</tr>
<tr>
<td>Diplectrona melanisensis Laird, 1958</td>
<td>USNM 38304</td>
<td>P</td>
</tr>
<tr>
<td>Diplectrona querni Yamaguti, 1968</td>
<td>USNM 63662</td>
<td>H</td>
</tr>
<tr>
<td>Diplectrona summanae Young, 1969</td>
<td>USNM 63144</td>
<td>P</td>
</tr>
<tr>
<td>Diplectrona vugamullum Young, 1969</td>
<td>USNM 63146</td>
<td>P</td>
</tr>
</tbody>
</table>

50–65 μm long with paddle shaped medial extremities and posteriorly directed lateral protuberances; ventral bar 70–82 μm long, 10–14 μm wide at median, boomerang-shaped with narrow terminals; 14 hooks, 9–10 μm long; dorsal and ventral squamodiscs 56–82 μm in diameter, consisting of 20–24 open-ended rows of scales forming a narrow “U” anteriorly and forming progressively straighter rows posteriorly. Mouth ventral leading directly to pharynx. Pharynx 36–48 μm long, 33–42 μm wide; esophagus short; ceca simple, terminating separately at anterior of posterior third of body. Testis oval, 48–52 μm long, 52–67 μm wide, in posterior half of body; vas deferens emerging anteriorly and passing medially to form seminal vesicle; muscular ejaculatory duct opening into basal bulb of male copulatory organ along with prostatic reservoir. Male copulatory organ sclerotized, proximal region reniform, 53–79 μm long, and divided into four compartments; distal region consisting of a curved tube, 20–37 μm long, narrowing progressively as it approaches genital pore. Ovary pyriform, 80–92 μm long, 28–40 μm wide, located immediately anterior to testis, swollen at base; distal portion curve dorsoventrally around right cecum. Vagina a sclerotized tube opening to left of median line directly behind male copulatory organ; vaginal duct forming two loops resembling a “g.” Ducts from seminal receptacle opening near ootype, which is surrounded by Mehlis’ gland; uterus opening at genital pore. Vitellaria lateral, overlapping ceca. Eggs not observed.

Host: Rock hind Epinephelus adscensionis (Serranidae), 41.1 cm total length.


Site of infestation: Gill filaments.

Etymology: The parasite is named for the locality.

Type material: Specimens have been deposited in the U.S. National Museum Helminthological Collection, holotype 82789, paratype 82790.

Discussion

Pseudorhabdosynochus monaensis may be differentiated from all previously described species on the basis of differences in the shape of the vagina. Furthermore, because P. monaensis has 20–24 rows of scales in each squamodisc, it is dissimilar to P. amplidiscatum, P. beverleyburtonae, P. bocquetae, P. caballeroi, P. cupatum, P. epinepheli, P. lactuensis, P. melanisensis, P. querni, P. serrani, P. summanae, and P. vugamullum, all of which possess 17 or less rows.

Figures 1–8.—Pseudorhabdosynochus monaensis n. sp. Figure 1. Entire worm, dorsal view (composite from holotype and paratypes). Scale bar (to upper right of the worm) = 100 μm. Figure 2. Dorsal squamodisc. Scale bar (right) = 25 μm. Figure 3. Ventral bar. Scale bar (below) = 50 μm. Figure 4. Dorsal bar. Scale bar (below) = 50 μm. Figure 5. Vagina. Scale bar (right) = 50 μm. Figure 6. Dorsal hamulus. Scale bar (right) = 25 μm. Figure 7. Male copulatory organ. Scale bar (right) = 25 μm. Figure 8. Ventral hamulus. Scale bar (right) = 25 μm.
Examination of the type material of *P. americana* by Beverley-Burton and Suriano (1981) revealed the presence of 20 ± 2 rows (mean ± SD) in the squamodiscs, instead of 20, 18, and 7–17 rows as reported by Price (1937), Caballero and Bravo-Hollis (1961), and Oliver (1968), respectively. Our examination concurs with that of Beverley-Burton and Suriano (1981). *Pseudorhabdosynochus monaensis* is differentiated from *P. americanum* in having all the squamodisc rows open, and smaller and differently shaped ventral hamuli and dorsal bars.

Of the remaining three similar species, *Pseudorhabdosynochus latesi* resembles *P. monaensis* in having 16–20 squamodisc rows but differs in having differently shaped haptoral bars and a male copulatory organ terminating in a straight tube. *Cyclopectanum magnisquamodiscum* also resembles *P. monaensis* in having 20 squamodisc rows but differs in the shape of the dorsal and ventral hamuli and the larger size of the male copulatory organ. *Cyclopectanum riouxi* resembles *P. monaensis* in having 11–22 squamodisc rows but differs in having the first two rows closed and also in having ventral hamuli of a different shape.

The new monogenean may be specific to the rock hind. This species was not found on numerous specimens of the very similar red hind *Epinephelus guttatus* examined either from the same locality where *P. monaensis* was found or from other localities. Also, this parasite did not occur on 30 other species of Caribbean sea basses examined.

The rock hind has been characterized as a shallow-water species in numerous Caribbean fish books, but we occasionally seen larger individuals of this fish (15–25 cm total length) on coral reefs off the mainland of Puerto Rico, and off Mona Island and Barbados.

Examination of diplectanid monogeneans from serranid fishes by Kritsky and Beverley-Burton (1986) revealed a taxonomic problem concerning the status of the genera *Pseudorhabdosynochus* Yamaguti, 1958, and *Cyclopectanum* Oliver, 1968. After these two researchers reviewed the histories of the taxa, they concluded that *Cyclopectanum* should be considered a junior subjective synonym of *Pseudorhabdosynochus*. Examination of holotypes and paratypes of *Diplectanum epinepheli* Yamaguti, 1938, of *P. epinepheli* Yamaguti, 1958, and of *C. hongkongensis* Beverley-Burton and Suriano, 1981, revealed their conspecificity; hence, *P. epinepheli* (Yamaguti, 1938) Kritsky and Beverley-Burton, 1986, was designated the valid name of the species. We came to the same conclusion after our examination of type materials of these three "species."

The review by Kritsky and Beverley-Burton (1986) also included a list of 14 described species of *Pseudorhabdosynochus* along with their synonyms. Our review of the literature revealed two additional species—namely, *Cyclopectanum magnisquamodiscum* Aljoskina, 1984, from *Chaetodon hoefleri* off the coast of southwestern Africa and *Cyclopectanum riouxi* Oliver, 1986, from *Epinephelus guaza* in the Mediterranean Sea (off France) and the Atlantic Ocean (off Ireland). The published descriptions by Aljoskina (1984) and Oliver (1986) indicated to us that both species should be transferred to *Pseudorhabdosynochus*; however, because we have been unable to obtain types or paratypes for examination, we hesitate to make a more definitive recommendation at this time.

Acknowledgments

For loan of specimens, we thank Rafael Lamothe-Argumedo, Colección Helmintologica del Instituto de Biología, UNAM, Mexico City; J. Ralph Lichtenhels, USNM Helminthological Collection, Beltsville, Maryland; A. G. Chabaud, Collection du MNHM, Paris; and Jun Araki, MPM, Tokyo.

References


Kritsky, D. C., and M. Beverley-Burton. 1986. The


