Anilocra are big parasites, common sights on the heads of Caribbean fish. Despite their size (up to three inches in length), they appear to cause their hosts no harm. They aren’t bloodsuckers, and fish don’t seem to take extreme measures to shake them loose. Anilocra simply hang on with their seven pairs of hooked feet and grow along with the fish, living on small bits of floating food that cling to their host’s skin.

This kind of life means some sacrifices. Once they find a host on which to hang, Anilocra lose their ability to swim. If they come loose, they drift until they’re eaten. Like other crustaceans, Anilocra must molt their chitinous, segmented shells in order to grow. But unlike other crustaceans, when Anilocra molt, their bodies are soft and their legs become useless for clinging. So they shed half their shells at a time, thus allowing the front portion of their bodies to harden and their legs to regain their grip before they shed the other half of the shell from their backs.

A sessile sex life also takes some adjustment. All Anilocra start life as males. If one lands on a host fish with a female attached, it usually remains male and mates with the female. When she dies, the male changes gender and awaits the arrival of a new male to fertilize her eggs. If a newly hatched Anilocra finds a host without a female, it changes sex more rapidly.

The female lays her eggs in a brood pouch formed by platelike extensions of her back legs. In one species we studied, the female holds her newborn—there may be two hundred of them—in this chamber until they are able to swim. Then she releases the one-tenth of an inch long young, one by one. The grouper, above, carries a female and young beneath its eye, and a large Anilocra, right, has attached itself to the forehead of the squirrelfish.
Lucy Bunkley Williams and Ernest H. Williams (page 40) have studied the natural history of the parasitic crustacean *Anilocra* for the last fourteen years. Most of their work was done in the Caribbean, where they established the Caribbean Aquatic Animal Health Laboratory at the University of Puerto Rico, Mayagüez. From there they began documenting the “bleaching” that has destroyed many of the area’s coral reefs.