Geographic distributions were determined by collections throughout the tropical western Atlantic and by examining Caribbean materials from 14 museums. The distributions of the nine known species of Caribbean *Anilocra* indicate that two pairs of closely related species have formed and several others may be in the process of speciating. Early life history data were obtained using saturation, scuba diving techniques from the NOAA, National Undersea Laboratory System's Hydrolab Undersea Habitat, located at Salt River Submarine Canyon, St. Croix, U.S.V.I. Life cycle strategies of the Caribbean *Anilocra* differ from other Cymothoid genera and other species of *Anilocra*. Most Cymothoids and other *Anilocra* have a large, static, monogamous, developmentally stunted male. The male of the Caribbean *Anilocra* is functional at a body size and stage of morphological development typical of juveniles of these other cymothoids, and is highly motile, potentially polygamous, and developmentally unrestricted. It is referred to as a "micromale." Recruitment by *A. chromis* indicated these isopods infect hosts directly from other infected hosts instead of from the plankton. Natural release of micromale *A. chromis* and an impact-activated release are described. The latter seemed to be a method of saving viable, incompletely developed, micromales from predation. Experimentally exposed micromales of *A. chromis* were host specific to adult brown chromis, *Chromis multilineatus* attaching only at night, and subsequently migrating across the body of the host toward the attachment position of the female isopod. Attachment of each isopod is an independent event. Isopods settled near the eyes of experimentally exposed juvenile brown chromis and some attached to the fins of the juvenile blue chromis, *C. cyaneus* (Poey). Host specificity may be more important than host predisposition in determining which host will be infected. *Phaeoptyx pigmentaria* was shown to be an intermediate host for *A. chromis*. Isopods settled on night active cardinalfish at night, indicating that low light levels, and not host inactivity, may prompt isopods to seek a host.