FLUTING ATTEMPT

Although archaeologists have now sought for many years to discover a foreign origin for the fluted point, they have so far failed, and it is now almost universally assumed to be of indigenous origin. For long this origin was also assumed to have been in the southwest, where the fluted point first attracted major attention. But increasingly the view is presented that while "hundreds of Clovis points have been found in the plains, thousands have been recovered in the eastern United States. . . . and if frequency or abundance is an indicator of geographical center of origin, then such an origin must be in the East (Willey, 1966:48)."

If such should be the case, it raises the problem of identification of the early or proto-fluting attempts. It would seem quite illogical to assume that the "classic fluted point" in its widely recognized perfection was the product of a first try, or even a first generation. For what early fluting attempts should we be alerted?

The point illustrated (Fig. 1) is presented to ask that question — not to answer it. According to our present typological concepts it resembles a crude example of what we locally call a Wheeler type. While this type is not yet dated, it is generally assumed to be post-Paleo Transitional. But the clearest example of a Transitional site seems to date to be the Stanfield-Worley Bluff Shelter (DeJamette, Kujack and Cambron, 1962). It contained no "Wheeler" types.

FIG. 1. Crude Wheeler Excurvate
The technologically and typologically Transitional types recovered (un-fluted Cumberland, Dalton, Hardaway, Big Sandy) had typical basal areas often hardly recognizable as differing from fluted basal areas. Even when the basal bevel common to fluted points was present, it was the classic bevel. Otherwise all these points had in one way or another a post-fluted technology and typology. There was nothing suggestive of an early or proto-fluting.

The point illustrated is quite different — it could represent an early fluting attempt. The shape is the roughly lanceolate which might be expected and has acquired no resemblance to the Quad, Dalton, Hardaway group. Basal and adjacent edge grinding has not yet appeared. The basal edge is beveled for the execution of the more nearly "fluting" on one face, but it is not at all the classic fluted beveling — as one can see on the reverse face and in the longitudinal cross section. It is more randomly flaked than either classic Paleo or the known post-fluted types. It is also plano-convex in horizontal cross section, a technology common to early forms the world over.

To repeat — and stress — this point is not presented as a candidate for the early fluted form. Of that we have as yet no knowledge. The aim is to question if we are adequately alerted to look for a proto-fluted type. Fluting is common enough at the technological level of pebble tools in Alabama, raising interesting speculations as to the possible evolution and adaptation of the fluting technique (Plates 54 — 57, Lively, Long and Josselyn 1965). With these "crude" lithic technologies recently observed to be so abundant in Alabama, there seems more reason to seek an origin of fluting in this area where classic Paleo is also very abundant.

REFERENCES CITED

DeJarnette, David L., Edward B. Kurjack, and James W. Cambron

Lively, Matthew, A. G. Long, and Daniel W. Josselyn
1965 The Lively Complex, Lively and Josselyn Papers. October 1965.

Willey, Gordon R.

Daniel W. Josselyn
Ernest H. Williams, Jr.
408 Broadway
Birmingham, Alabama
February, 1970